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Numerical results are presented for the flow field in a rapidly rotating gas. These 
results are compared with the predictions of asymptotic theories, particularly those 
of Brouwers concerning viscous effects. The comparison shows that the effect of the 
viscous core is important and the extent of the different flow regimes is well predicted 
by the theory of Brouwers. 

1. Introduction 
In  recent years considerable theoretical effort has been devoted to the problem of 

compressible flow in a cylinder rotating rapidly about its axis. The primary motivation 
for this work is to obtain an understanding of the flow field in a gas centrifuge used in 
the separation of the isotopes of uranium. The problem is, however, intrinsically 
interesting in its own right from the viewpoints of both analytical and numerical 
approaches. 

For uniform temperatures and no external perturbations the flow pattern is given 
by rigid body rotation. Departures from rigid body rotation are created as a result of 
deviations in the boundary conditions on the surface of the cylinder and the end walls, 
for example, by differential rotation of the end walls. A considerable simplification of 
the problem is obtained by assuming that departures from rigid body rotation are 
small. The governing flow equations may then be linearized about rigid body motion. 

One approach to the solution of these linearized equations was originally developed 
for the case of a semi-infinite cylinder by Steenbeck (1958) and Parker & Mayo (1963), 
and has been termed the long-bowl approach. Viscous forces are assumed to be 
important everywhere, with the consequence that any axial velocity profile established 
by the boundary conditions on the cylinder end walls decays axially. The solution may 
then be expanded in a series of decaying exponentials, e.g. 

qz = ECfi(r*)e-Aiz* 
i 

where q: is the axial velocity, r* the radial distance from the axis and z* the distance 
from the end wall. This gives rise to an eigenvalue problem for the unknown decay 
rates hi. For certain parameter values, particularly for high peripheral velocities and 
low pressures these decay rates are quite large and the magnitude of the axial velocity 
decreases very quickly m a y  from the end \vdls. 
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FIGURE 1. Geometrical configuration. 

A second approach is based upon the asymptotic expansions used by Stewartson 
(1957) for the incompressible case. With this approach it is assumed that the Ekman 
number E ,  the ratio of viscous forces to rotational forces, is small. Consequently viscous 
forces are important only in boundary layers near the end walls, cylinder wall and in 
any shear layers present. Elsewhere the flow is effectively inviscid, leading to a non- 
decaying flow profile in the centre of the cylinder. That is, the axial velocity outside 
the boundary layers depends only upon the radius and is independent of the distance 
from the end walls. An Ekman boundary layer of thickness order E4 is found on each 
of the cylinder end walls and drives the axial flow in the interior. This axial flow is 
rechannelled around the cylinder in boundary layers on the side walls of thickness 
order E )  and Ea, the Stewartson E* and Ea layers. For antisymmetric boundary 
conditions the Ef layer is not needed and only the E )  layer is present. This approach 
has been generalized to compressible flow by, among others, Sakurai & Matsuda (1974), 
Nakayama & Usui (1974) and Durivault & Louvet (1976). It is often referred to as the 
modified incompressible or ' short-bowl ' approach. Summaries of both these approaches 
and extensive bibliographies are given by Ratz (1978) and Soubbaramayer (1979). 

The first approach leads to solutions which may have considerable axial decay, 
whereas the second leads to solutions with no axial decay. However the modified 
incompressible approach depends on the assumption that viscous forces are small 
away from boundaries and shear layers. At high rotational speeds the density near the 
axis of rotation becomes extremely low. Hence the kinematic viscosity, p/p,  where p 
is the dynamic viscosity andp is the density, becomes large with the result that viscous 
forces are important once more. The region where these viscous forces are important 
is known as the viscous core. Using scaling arguments Brouwers (1976, 19783) has 
deduced the parameter ranges where the viscous core is non-existent, leading to short 
bowl solutions, and where the core extends over the entire cylinder giving axial decay 
and long bowl solutions. In between there exists both a viscous core and an inviscid 
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non-decaying region with the usual viscous boundary layers near the rigid walls. 
Brouwers ( 1 9 7 8 ~ )  has also used approximate Pohlhausen techniques to  obtain sol- 
utions for the side-wall boundary layer and the viscous core layer. These solutions allow 
a more precise estimate for the position of the viscous core and side wall boundary 
layer for antisymmetric boundary conditions. 

The primary purpose of this paper is to investigate the results of Brouwers con- 
cerning the range of validity of the short bowl regime. In  § 2 the numerical solution 
technique is briefly described, particularly the techniques used for resolving the 
boundary layers. In  $3, a detailed comparison between the numerical results and 
asymptotic predictions from Brouwers’ theories is carried out for two simple model 
sets of antisymmetric boundary conditions. These are a simple ‘friction’ drive and a 
linear ‘thermal ’ drive. The primary conclusion to be drawn from these results is that 
the predictions of Brouwers are in broad agreement with the numerical results and 
provide a unified framework for the solution of the linearized equations. 

2. Mathematical and numerical formulation 
Consider a gas uniformly rotating with angular velocity Q in a cylinder of height H 

and radius L as shown in figure 1. For a uniform temperature T* = T,* the system is 
described by rigid body rotation : 

I MQ2 
2RT,* q* = 0, pg = pEexp - (r*2- LZ), 

where q* is the velocity relative to the rigid body motion, pg the density, pz the 
cylinder wall density, r* the radial distance from the axis of rotation, M the molecular 
weight of the gas, R the gas constant and p; the pressure. A small perturbation 
applied to the system induces a flow within the cylinder. This perturbation is defined 
by a Rossby number S. For example, if the angular velocity is perturbed by a small 
angular velocity f +AQ on the end walls the Rossby number is AQ/Q. Similarly for 
temperature perturbations & aAT*, S = AT*/T,*. For a small Rossby number, 6, the 
solution may be expanded as a Taylor series in S about rigid-body motion. The 
linearized equations are obtained by ignoring terms of O(b2) and assuming axisym- 
metric perturbations. The approach and notation used to obtain the linear equations 
is similar to that used by Matsuda, Hashimoto & Takeda (1976). 

Non-dimensional cylindrical co-ordinates r,  8, z are defined by 

( r ,  8, X )  = (r*,  8, z*)/L 

and non-dimensional variables as 

(u, w) = (9:) 93, qz*)/LQ8, T = (T* - T,*)/T,*S, P = (P* -p9 ) /p8S2  

where 
RTZ MQ2L2 G = - p z  = ~ p g ,  pg = pzexp [&G(r2- l)], RT,* 

The subscript B refers to the unperturbed ‘basic’ flow and the subscript w to 
quantities evaluated at the cylindrical wall. 

4 F L h I  107 
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The equations may then be expressed as: 

a a 
continuity, - (EBru) +- (TEBW) = 0; 

ar 82 
T momentum, 

B momentum, (2.4) 

l ap  E 1 a raw 
x momentum, -- = - (-- (T) 

Gaz eB r ar 

and energy, 

In the above eB = exp [&G(r2- i)] 

and 
i a  aw V.u = -- (ru)+-. 
r ar ax 

The equation of state then becomes an equakion for the density perturbation p 

p = p + T .  

The solutions of these linearized equations are governed by the four non-dimensional 
parameters, G, the speed parameter, E = p/RL2p$, the Ekman number, P,(y- i)/y, 
a thermodynamic parameter, A = NIL, the aspect ratio; Pr is the Prandtl number, 
pCp/k, C, and C, are the specific heats of the gas at constant pressure and volume 
respectively, y is their ratio and k is the thermal conductivity. These parameters may 
be combined to give the Brinkman number 

the modified Ekman number, E* = fEG2, and the modified aspect ratio A* = i A G ,  
Brouwers (19783). 

The program PACE (Program for the Axisymmetric Centrifuge Equations), used 
to obtain the present numerical results, solves the ‘primitive variable’ form of the 
finite difference equations, i.e. it solves a finite difference representation of (2.2)-(2.6) 
for the velocities, pressure and temperature. 

In the present problem the boundary layers are extremely small when compared to 
the overall cylinder dimensions. In  order to achieve an accurate numerical solution it 
is essential that the grid be chosen so that the boundary layers are resolved. Many 
conventional finite difference schemes using variable grids are only first-order accurate 
and to prevent gross errors from using a highly stretched grid it is customary to limit 
the ‘mesh expansion ratio ’. Typical values for this expansion ratio are about 1.1.  The 
requirement to resolve the boundary layers for such mesh expansion ratios implies an 
enormous number of mesh points with consequential implications on program size 
and execution time. 

In the program PACE the finite difference mesh is chosen by a smooth stretching 
function, with equally spaced intervals in the stretched function. The resulting 
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equations are now second order accurate in the stretched function. This technique is 
discussed in detail by KBlnay de Rivas (1972). It should be emphasized that the 
stretching function is used only to obtain the mesh; the resulting finite difference 
equations being similar to those found when using more conventional differencing 
techniques. The stretching functions used are similar to those described by Orsag & 
Israeli (1974) and may also be used to resolve interior shear layers. Using this technique, 
mesh expansion ratios of 5 and more are quite common and, as will be seen, the 
resolution of the boundary layers is very good. 

As is customary with the primitive variable formulation the program uses a staggered 
grid system with the variables defined at different spatial locations (Roache 1972). To 
avoid difficulties in calculating the pressure a block iterative method has been adopted 
for the solution of the finite difference equations. The computational domain is 
divided into several overlapping blocks. The iterative technique cycles around each 
block sequentially solving the equations within each block by a direct method. The 
direct method used is a general sparse matrix linear equation solver, MA28A, from the 
Harwell Subroutine Library (Duff 1977). This technique effectively overcomes band- 
width limitations found when using a direct method on the full set of finite difference 
equations. It also enables efficient use to be made of backing store since only one block 
need be in core at any one time. 

For all the results presented here, the thermodynamic parameter P, (y - l)/y has 
been taken to be 0.06. Most of the results have been obtained with 15 intervals in the 
radial direction and 24 intervals in the axial direction, although some have been 
repeated with double the resolution in both directions. An inner boundary has been 
assumed at r = 0.1 with u = 0, v = 0, &/ar = 0 and aT/ar = 0 at r = 0.1. Due to the 
large change in density across the machine however, the solutions in the main body of 
the flow are insensitive to the exact location of this inner boundary and to the exact 
form of the boundary conditions. 

3. Results : antisymmetric boundary conditions 
In  this section results for antisymmetric boundary conditions are considered. When 

the boundary conditions are antisymmetric the asymptotic analysis is simplified and 
for the numerical approach, the finite difference equations need only be solved for half 
the cylinder, considerably reducing the time required for computation. 

Two simple model boundary conditions are studied. The first has rigid end walls 
rotating slowly relative to the wall of the cylinder with constant angular velocity 
perturbations T & A Q  i.e. 

v = - + r ,  z = $ A ;  

v = & ,  z = - i A .  

This is referred to as friction drive. The asymptotic analysis of Brouwers (1978 b)  shows 
that, for the parameter ranges considered here, the equations may be expressed in 
terms of a stream function and a quantity x = v /r  - $T, only. This implies that similar 
effects to the friction drive are induced by imposing temperatures T = f 1 on the end 
walls with the cylinder wall remaining at  T = 0. Numerical computations have been 
performed for both cases, the numerical values of the stream function being found to 
be identical to a t  least two significant figures. 
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The second has a temperature perturbation f *AT* on the end walls with a linear 
temperature profile on the cylinder wall, i.e. 

T = # ,  % = + A ;  

T = -+., z = - & A ;  

T = z / A ,  r =  1. 

(a)  Friction drive 

The modified incompressible, or short-bowl regime, has a non-decaying inviscid flow 
in the centre of the cylinder which is induced by the motion generated in the end-wall 
Ekman boundary layers by the imposed boundary conditions, the ‘Ekman suction’. 
The thickness of the Ekman layer is order E4. The inviscid flow is rechannelled around 
the cylinder in a boundary layer associated with the cylinder wall, known as the 
Stewartson layer. This layer has a thickness of order E*. When the density becomes 
sufficiently small towards the axis, Brouwers postulates that diffusive effects are again 
important, giving a viscous core. For certain parameter values the viscous core meets 
the cylinder wall Stewartson layer and viscous effects become important everywhere. 
This gives rise to the long-bowl regime where the flow is governed by eigenfunctions 
which decay from the end walls. 

Using scaling arguments Brouwers (1976, 1978b) gives order of magnitude estimates 
for the extent of the viscous Stewartson layer and the viscous core in terms of the 
parameter x, defined by 

x = hG(1 - r2 ) .  

The Stewartson layerlinviscid region boundary, x,, is given by x, N G(AE)) ,  and the 
inviscid region/viscous core boundary, x,, by x, - In (EG3A)-l. The changeover from 
the short bowl regime to the long bowl regime therefore occurs when x, = x,. Brouwers 
(1976, 197%) obtained a series solution for the Stewartson layer equations (under the 
assumption that ex N 1 in the Stewartson layer) but was unable to obtain an analytic 
solution for the viscous core equations. Based on these calculations he could only give 
order of magnitude estimates as to the parameter values where a well-defined inviscid 
region occurs. 

Using an approximate solution technique however for the Stewartson E* layer and 
viscous core equations Brouwers (19784 predicted at the mid-plane of the cylinder, 
z = o  

(3.1) 
and 

(3.2) 
where 

x, = 2*07G(AE)* (1 +a&)-&, 
xc = In ( QhG3A E)-l, 

and 

48a3 
[ 190n( 1 + &aBr)]t A =  

a = 1 - 2G-lln (&GaAE)-’. 

For a given aspect ratio A and speed parameter G the equation 

x, = xs (3.3) 

may be solved to determine where the short bowl regime changes to a long bowl regime. 
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FIQURE 2(a)-(b) .  For legend see p. 96. 
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FIQURE 2. Streamlines in the top half of the cylinder due to friction drive A = 30, Q = 35. 
(a) E = 2-7 x 10-6, (a) E = 6.73 x 10-7, (c) E = 3.37 x 10-7, ( d )  E = 0.56 x lo-’; r, Brouwem 
core position, 2, Brouwers Stewartson-layer position. 
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The approximate solutions (3.1) and (3.2) are obtained by assuming that the solution 
has the form of a quartic polynomial and applying a Pohlhausen technique. As a result 
of applying this method the boundary layers have well defined thicknesses even though 
the exact solutions exhibit exponentially damped oscillations. For the side-wall 
Stewartson layer, the thickness derived from the approximate solution may be 
identified with the thickness of the ‘return layer’, i.e. the distance of the first zero of 
the axial velocity from the side wall or the position of the first local maximum of the 
stream function. This quantity, the thickness of the return layer, is also easy to identify 
in the numerical calculation. In  the remainder of this section, concerning friction drive, 
it is therefore assumed that the thickness of the Stewartson layer is that of the return 
layer, enabling a well-defined Stewartson-layer thickness to be obtained from the 
numerical results. This is far simpler than using any other definition of the thickness 
of the layers, such as the momentum thickness, and is consistent with the results of 
the Pohlhausen techniques. For the purposes of this paper therefore, to examine the 
range of applicability of the short bowl regime, the assumption is satisfactory and, as 
will be seen, the errors incurred by this assumption will be small. 

Figures 2 (a)-(d) show the computed streamline patterns for friction drive in the top 
half of the cylinder for C = 35, A = 30 and a range of Ekman numbers. In each of 
these figures, 2(u)-(d), the value of the stream function on the ith contour may be 
obtained by taking the value indicated on the first contour, the lowest value, and 
multiplying by i2. This also applies bo the other stream-function contour plots given in 
this paper. 

For this case Brouwers approximate theory predicts, from (3.1) and (3.2), that the 
long-bowl regime will be valid for E 2 8-4 x Numerical results from PACE are 
in agreement with this result. For E = 2.7 x figure 2(a) PACE predicts strong 
decay, whereas for E = 6.73 x lo-’, figure 2(b), there is a noticeable cylinder wall 
Stewartson layer and a well-defined inviscid region. This inviscid region is characterized 
by straight vertical streamlines, indicating no radial flow. 

As the Ekmannumberdecreases, figures 2 (c) and 2 (d), the Stewartson layer becomes 
narrower and the inviscid region larger. Also marked on these figures are the 
predicted positions of the edge of the Stewartson layer and viscous core from (3.1) 
and (3.2). There is reasonable agreement regarding the position of the Stewartson 
layer except at E = 6.73 x where axial diffusion is still bound to have some 
effect. 

Examining figures 2 (b)-(d) towards the axis of the cylinder one observes signs of 
decay where the streamlines are not parallel, the viscous core postulated by Brouwers. 
The difference between the inviscid flow region and the viscous core is not particularly 
pronounced for the flow generated by the end wall boundary condition chosen in this 
study. The position of the viscous core predicted from Brouwers approximate theory 
also appears to be considerably nearer the cylinder wall than the numerical results 
indicate. This apparent discrepancy may be understood in terms of the boundary 
conditions on the stream function assumed in calculating the core position in Brouwers 
asymptotic theory. The stream function in the inviscid region in Brouwers ( 1 9 7 8 ~ )  
results from end wall boundary conditions which have a radial dependence as 
follows 
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FIGURE 3. Relative thickness of E* Stewartson layer at mid-plane, z = 0, i.e. t8/L, aa a function 
of espect ratio A ,  Q = 35. - , Brouwers; x ,  E = 6.73 x 10-7; +, E = 3.37 x 10-7; 0, 
E = 1.61 x lo-'; 0, E = 0.86 x For relative thickness 2 0.055 no Stewartson-layer 
thickness can be defined for G = 35. 

3 0.03 
* 

+ 
E = 0.56 lo-' 

0.0 1 

I I I I I I I I I 

10 20 30 40 50 60 70 80 90 

Speed parameter, G 

FIQURE 4. Relative thickness of E* Stewartson layer at mid-plane, z = 0, i.e. t8/L w a function 
of speed parameter 0, A = 30. -, Brouwers; + , E = 0.56 x lo-'; x , E = 3.37 x 10-7. 

whereas the inviscid region stream function in the present study arises from vcc r at 
the end wall boundary. Defining a stream function by 

the present boundary conditions result in 
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Radius, r 

FIGURE 5. Stream function x &QE) as a function of radius at mid-plane, z = 0 for case A = 30, 
a = 35. - , Inviecid flow from rwymptotic theory. 0 ,  E = 5.4 x 
X ,  E = 6 . 7 3 ~  lo-'; +, E = 3.37 x LO-'; 0, E = 0 . 5 6 ~  

0, E = 2.7 x 

whereas the stream function based on the assumption of Brouwers would be cc r2.  If 
the inviscid region stream function related to the present boundary condition were 
substituted into Brouwers asymptotic analysis, the core position would move towards 
the axis of rotation, as observed numerically. It is not possible to estimate precisely 
the core position from the numerical results for this boundary condition, since there is 
insufficient resolution in the central region to pick up the small difference between the 
results from the numerical solutions and (3.4). Therefore the best means of identifying 
the position of the viscous core from the numerical calculations occurs when the core 
touches the side-wall Stewartson layer and no inviscid region is found. 

Figures 2 (a)-(d) also indicate the size of the Ekman E8 layers on the end walls. The 
layers are not visible on the graphical scale except near the left-hand edge where 
the layer is beginning to thicken appreciably. The figures also show how appropriate 
the term ' Ekman suction' is for theeffect of theend-wall layer upontheinviscidregion. 

Figure 3 shows the effect of varying the aspect ratio upon the thickness of the 
Stewartson layer. For Q = 35 and a relative thickness 2 0.055 the simple theory of 
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+ + 

+ +  

FIQURE 6. Axial velocity in Stewartson layer, Q = 35, A = 30, E = 3.37 x lo-', z = 0. 
+ , PACE 30 x 48 grid; z,, Brouwers return-layer position from Pohlhausen theory. 

Brouwers, from (3.1)-(3.3), predicts that the viscous core meets the Stewartson layer 
and no inviscid region is to be found. This observation is consistent with the numerical 
results of PACE. 

Figure 4 shows the effect of varying the speed parameter on the thickness of the 
Stewartson layer. As the speed parameter increases the thickness of the Stewartson 
layer decreases. It should also be remembered that for a given Ekman number and 
aspect ratio, increasing the speed parameter results in the core position moving 
towards the cylinder wall more rapidly than the Stewartson-layer thickness decreases. 
In  extreme cases, increasing speed parameter can again result in the disappearance of 
the inviscid region. This is illustrated by the case, E = 3.37 x lo-' and C = 80, where 
both asymptotic theory and PACE predict that there is no inviscid region 

In both figures 3 and 4 the agreement between the calculations and asymptotic 
results on the extent of the short bowl regime are good, over a wide range of the par- 
ameter values, although the calculations consistently under predict the analytical 
estimate (3.1) based on Brouwers (19784. It should also be borne in mind that while 
the differences look appreciable on the figures, the differences in layer thickness are 
only of the order of 1 yo relative to the cylinder radius. 

The magnitude of the stream function in the inviscid region can be calculated from 
the asymptotic theory and for the present boundary conditions on the cylinder end 
walls is given by (3.4) as a function of radius and is shown in figure 5.  Also plotted on 
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FIGURE 7. Comparison of redial velocity in the Ekman layer, A = 30, a = 35. -, Asymptotic 
theory; x , E  = 3 . 3 7 ~ 1 0 - ~ , 1 5 ~ 2 4 g r i d ;  + , E  = 3 . 3 7 ~ l O - ~ , 3 0 ~ 4 8 g r i d ; O , E  = 0.56~10-7 ,  
15 x 48 grid. (a,) T = 0.964, ( b )  T = 0.702. 
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figure 5 are the computed results from PACE at z = 0 for the case A = 30, G = 35 as 
a function of Ekman number. At high Ekman numbers there is no evidence of an 
inviscid region and the effects of axial decay are important. 

As a check upon the validity of (3.1) for the extent of the return layer, a comparison 
has been made in figure 6 between Brouwers’ exact series solution for the Stewartson- 
layer equations, and the numerical results from PACE for the axial mass flow in the 
mid-plane z = 0. Also indicated is the thickness of the return layer, x,, from (3.1). The 
agreement between the numerical results and the exact Stewartson-layer solution is 
reasonable, although the exact solution under predicts the thickness of the return 
layer. The Pohlhausen solution, on the other hand, gives a better estimate of the 
position of the return layer. This corresponds roughly in position to the minimum 
point in the exact solution. There is also a mismatch between the inviscid flow solutions 
and the exact boundary-layer solution. This is almost certainly due to the assumption 
made by Brouwers and others that the density within the Stewartson layer does not 
change appreciably, i.e. ez N 1. There is, therefore, ambiguity in comparing results 
derived from Brouwers’ exact solution for his definition of the stream function, to the 
definition used here, since the non-dimensional density, ex, is used in the conversion. 

Durivault & Louvet (1976), and Bark & Bark (1976) have considered the effect of 
varying density in the Stewartson layers. Their numerical solutions of the Stewartson 
layer equations show that the layers are roughly a third thicker than when the density 
variations are ignored. Their observation is in accord with the results presented in 
figure 6. For the purpose of estimating the extent of the long bowl regime however this 
is a fairly small effect. For example, in the cases considered in this paper where an 
inviscid region may be found it would increase the thickness of the Stewartson layer, 
relative to the cylinder radius, by at  most 3 yo. 

Analytical solutions for the flow in the Eckman layer have been derived inde- 
pendently by several authors, e.g. Sakurai & Matsuda (1974), Nakayama & Usui 
(1974), Brouwers (1976). The form for the radial velocity in the layer is given by 

u = - &r( 1 + 0-25Br r2)- )  e-usin y (3.5) 

where y = (1 + 0.25Brr2)aA(Ee~o(1-r2’)-t ( z  - BA). The radial velocity therefore has the 
form of a rapidly damped sine wave, the thickness of the layer increasing as r decreases. 
The radial velocity profile is sketched at one radius in figure 7 (a) ,  together with some 
numerical results. The agreement is remarkable, demonstrating the ability of the 
numerical technique to handle the very thin boundary layers which are present. For 
the Ekman layer considered, the first peak on the radial velocity profile is positioned 
at  about 0.005 % of the height of the computational domain, &A, away from end wall, 
whilst the second peak is about 0.04 yo. Similar agreement is found at the same radius 
for cases where the flow decays everywhere, e.g. for E = 2.7 x 10-8, and so are not 
reproduced here. 

Brouwers (19783) also shows that the Ekman layer equations are valid only for 
x < In E*-l and for x - In E*-’ all terms of the original equations are important. 
Figure 7 (b)  shows the computed and asymptotic radial velocityprofile in theend-wall 
boundary layer much nearer to the axis than in figure 7 (a). For this case x = 8.87 and 
In E*-’ = 8.2, so that x N In E*-l. The figure shows that the numerical results are no 
longer in agreement with the asymptotic solution (3.4) for the Ekman layer. Whilst 
the accuracy of the numerical result,s at this radius is not as good as in figure 7 (a )  due 
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FIUURE 8 (a, b ) .  For legend am p. 104. 
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FIGURE 8. Streamlines in the top half of the cylinder due to linear thermal drive, A = 30, 
a = 35. (a) E = 2.7 10-6, (b )  E = 3-37 x 10-7, ( c )  E = o m  x 10-1. 

to the much larger radial mesh increments, these results indicate that the neglected 
radial diffusion terms in the Ekman-layer equations may now be important. 

Viscous effects will also be important for the case when the two Ekman layers touch. 
As these layers grow in extent towards the axis the viscous region in this case will firat 
appear near the axis, giving rise to another type of viscous core. For the aspect ratios 
considered in this paper, this phenomenon does not occur. This is well illustrated by 
the results of figure 4 since for a constant Ekman number the long bowl regime occurs 
as the aspect ratio increases, not decreases. 

( b )  Linear thermal projile 

For a linearly varying cylinder-wall temperature boundary condition, the Ei  
Stewartson layer takes a completely different form. The asymptotic theories predict 
that instead of simply rechannelling the inviscid flow, there is substantial recirculation 
within the Stewartson layer and that it is much thicker than that for the friction drive, 
e.g. Durivault & Louvet (1976), Nakayama & Usui (1974), Sakurai & Matsuda (1974), 
Mikami (1973) and Brouwers (1976). Figures 8(a)-(c) show the computed stream 
function contours for three cases. In the first case there is no inviscid region present as 
the viscous core fills the machine. In the other two cases an inviscid region is predicted 
by the asymptotic theory for friction drive, however it is now very difficult to judge 
the extent of the Stewartson layer from the numerical calculations. At the lowest 
Ekman number, in figure S(c), a second recirculation region is observed within the 
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FIGURE 9. Relative thickness of the E* Stewartson layer at the mid-plane, z = 0 , ~  a function 
of Ekman number, A = 30, a = 35. -, Brouwers ; + , numerical calculation for friction drive ; 
x , retiirn-layer thickness/0.565, linear temperature drive. 

Stewartson layer. This is predicted by the asymptotic theories, since the flow profile 
within the layer is found to have exponentially damped oscillations. 

The flow in the end-wall Ekman layers is generated by the boundary conditions on 
the function x = v / r  - $T, thus the asymptotic Ekman-layer solutions are identical 
to those for friction drive, except for a factor 2. The agreement for the radial velocity 
in the Ekman layer between the asymptotic and numerical predictions is similar to 
that found in figure 7. As the behaviour of these Ekman-layer solutions also governs 
the inviscid flow in the interior the inviscid stream function is given by half equation 
(3.5). 

The stream function in the interior due to the Ekman-layer flow is therefore K E 4 .  
The asymptotic analyses however, e.g. Brouwers (1976) show that the magnitude of 
the stream-function maximum for the Stewartson-layer solutions arising from this 
boundary condition is approximately oc E-1. This dependence is observed in the 
calculations. The recirculating flow in the Stewartson layer is therefore much stronger 
for small Ekman numbers than the flow recirculating in the interior from one Ekman 
layer to the other. This also explains why the second recirculating region in the 
Stewartson-layer solutions is only visible in figure 8 (c). For higher Ekman numbers 
this recirculation is swamped by the inviscid flow solution and it is only at  very low 
Ekman numbers that this second recirculating region is visible. Detailed comparison 
of the inviscid flow solution with the results from PACE in a similar fashion to that in 
figure 6, shows that axial decay is important for the first two cases considered in 
figure 8, and a well-defined inviscid region is to be found only in figure 8(c), i.e. 
E = 0.56 x lo-'. It is apparent that the thicker Stewartson layer associated with the 
linear thermal drive touches the viscous core a t  lower Ekman numbers than for 
friction drive, consequently viscous effects are more important for a linear thermal 
drive than for friction drive over the parameter ranges considered. 

The asymptotic analyses are now little help in deriving a simple expression for the 
extent of the Stewnrt.son layer. Since the Stewartson layer is so thick, there are 
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appreciable variations in the rigid body density ez across the layer and the approxi- 
mation eZ = 1 is not as good as for a friction drive. For example, for the case of figure 
S ( c ) ,  ez is about 0.1 near the edge of the Stewartson layer. The Stewartson layer 
equations without the assumption of constant density, are not amenable to easy 
analytic solution and numerical solutions are generally obtained. Since this is non- 
trivial we have not carried out any comparison with the results of the asymptotic 
predictions for the flow within the Stewartson layer. Louvet & Cortet (1979) have 
conducted a comparison between numerical solutions of the full-linearized equations 
and the numerical solution of the Stewartson layer equations (including the variation 
of density) in the short bowl regime and found good agreement between the two 
treatments. 

A simple formula may however be obtained for the thickness of the ‘return’ layer, 
the distance between the cylinder wall and the first maximum of the stream function. 
Brouwers (1976) finds that the ratio of these two distances is approximately 0.565. 
In  figure 9, the analytic thickness of the Stewartson layer for friction drive given by 
(3.1) is graphed for Z = 0, G = 3-5 and A = 30, together with the computed thickness 
for friction drive and the computed returns layer thickness for thermal drive divided 
by 0.565. Once again agreement is good. 

4. Conclusions 
The primary conclusion to be drawn from this work is that the predictions from the 

asymptotic theories of Brouwers regarding the influence of the viscous core are in 
good agreement with the numerical results. In  particular the Pohlhausen solutions for 
a friction drive provide simple estimates of the extent of the core and the side-wall 
Stewartson layer and, despite a different end-wall boundary condition, give a good 
indication of the nature of the flow. It is important therefore that other asymptotic 
analyses based on the modified incompressible or short bowl approach correctly take 
into account the effects of the viscous core, particularly if the parameters are such that 
the core touches either of the Stewartson E),  or for non-antisymmetric conditions, 
the much thicker Ei  layer. 

It is difficult to apply the analytic asymptotic theories to more complex boundary 
conditions. However the theories do still provide a useful guide to the nature of the 
solutions of the linear equations and their underlying physics. 

This work was performed under contract for BNFL and Urenco/Centec. 
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